EXPLORING ECONOMIC LANDSCAPES: DIVIDING SOCIAL NETWORKS INTO THREE COMMUNITIES USING THE MAXIMUM LIKELIHOOD METHOD
Ключевые слова:
Social Networks, Maximum Likelihood Method, Economic, Analysis, Market Segmentation, Innovation Diffusion, Financial Networks, Labor Markets, Consumer Behavior, Targeted Marketing, Network CommunitiesАннотация
This article explores the application of the maximum likelihood method in dividing social networks into three distinct communities, with a focus on its implications for economic analysis. By leveraging this approach, economists can uncover hidden patterns in social interactions, enabling more precise market segmentation, targeted marketing strategies, and informed policy-making. The method is particularly useful in identifying key influencers and understanding the dynamics of innovation diffusion, financial networks, labor markets, and consumer behavior. Through practical examples, the article demonstrates how this technique can provide valuable insights into economic landscapes, enhancing our understanding of complex economic systems and informing more effective economic strategies.
Библиографические ссылки
Мазалов В. В., Никитина Н. Н. Метод максимального правдоподобия для выделения сообществ в коммуникационных сетях //Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. – 2018. – №. 3. – С. 200-214.
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582.
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174.
Karrer, B., & Newman, M. E. J. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83(1), 016107.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 1981-2014.
Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., ... & Van Alstyne, M. (2009). Life in the network: the coming age of computational social science. Science, 323(5915), 721-723.
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.