THEORETICAL FOUNDATIONS OF STATISTICAL ANALYSIS OF BIG DATA STREAMS
Ключевые слова:
big data streams, statistical analysis, data mining, real-time processing, algorithmic efficiency, streaming analyticsАннотация
This paper presents the theoretical foundations of statistical analysis for big data streams. It adapts classical statistical methods to process continuous, high-velocity data, emphasizing real-time estimation, adaptive windowing, and anomaly detection. Experimental results confirm that these techniques deliver accurate and efficient insights, demonstrating their potential for scalable, real-time applications
Библиографические ссылки
Resolution of the President of the Republic of Uzbekistan No. PP-358 dated 14.10.2024 "On approval of the Strategy for the development of artificial intelligence technologies until 2030".
Decree of the President of the Republic of Uzbekistan - No. UP-157 dated 14.10.2024 "On additional measures to support enterprises engaged in export activities in the field of digitalization".
Chinese authorities plan to increase the volume of e-commerce to $6 trillion. // [Electronic resource]. - Access mode:
http://www.rosbalt.ru/business/2022/12/30/1580499.html
McKinsey Global Institute. The Internet of Things: Mapping the Value Beyond the Hype / McKinsey & Company, 2022.
Internet Users by Country// InternetLiveStats.2023/ [Electronic
resource]. – Access mode: http://www.internetlivestats.com/internet-users-bycountry/.
Director of the Center "Electronic Government" of Uzbekistan on the results and upcoming changes//DIGITAL REPORT [Electronic resource]. – Access mode: https://digital.report/rukovoditel-elektronnogo-pravitelstva-uzbekistana-obitogah-i-gryadushhih-peremenah.
Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS '02), 1-16. https://doi.org/10.1145/775047.775068
Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: A review. ACM SIGMOD Record, 34(2), 18-26. https://doi.org/10.1145/1066157.1066178
Aggarwal, C. C. (2013). Data Streams: Models and Algorithms. Springer. https://doi.org/10.1007/978-3-642-34319-8
Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Foundations and Trends® in Theoretical Computer Science, 1(2), 117-236. https://doi.org/10.1561/0400000001
Mukhitdinova, M. Kh. (2023). Effectiveness of AI in statistical analysis of big data streaming. Scientific-technical journal of FerPI, 27(3), pp. 148-152.
Mukhitdinova M. Kh. Harnessing the power of artificial neural networks for advanced statistical analysis. Scientific Journal of “International Finance & Accounting” Issue 2, April 2023. ISSN: 2181-1016.