THEORETICAL FOUNDATIONS OF STATISTICAL ANALYSIS OF BIG DATA STREAMS

THEORETICAL FOUNDATIONS OF STATISTICAL ANALYSIS OF BIG DATA STREAMS

Авторы

  • Munavvarkhon Mukhitdinova IASSR

Ключевые слова:

big data streams, statistical analysis, data mining, real-time processing, algorithmic efficiency, streaming analytics

Аннотация

This paper presents the theoretical foundations of statistical analysis for big data streams. It adapts classical statistical methods to process continuous, high-velocity data, emphasizing real-time estimation, adaptive windowing, and anomaly detection. Experimental results confirm that these techniques deliver accurate and efficient insights, demonstrating their potential for scalable, real-time applications

Биография автора

Munavvarkhon Mukhitdinova, IASSR

PhD, Doctoral (DSc) student at the Institute for Advanced Studies and Statistical Research

Библиографические ссылки

Resolution of the President of the Republic of Uzbekistan No. PP-358 dated 14.10.2024 "On approval of the Strategy for the development of artificial intelligence technologies until 2030".

Decree of the President of the Republic of Uzbekistan - No. UP-157 dated 14.10.2024 "On additional measures to support enterprises engaged in export activities in the field of digitalization".

Chinese authorities plan to increase the volume of e-commerce to $6 trillion. // [Electronic resource]. - Access mode:

http://www.rosbalt.ru/business/2022/12/30/1580499.html

McKinsey Global Institute. The Internet of Things: Mapping the Value Beyond the Hype / McKinsey & Company, 2022.

Internet Users by Country// InternetLiveStats.2023/ [Electronic

resource]. – Access mode: http://www.internetlivestats.com/internet-users-bycountry/.

Director of the Center "Electronic Government" of Uzbekistan on the results and upcoming changes//DIGITAL REPORT [Electronic resource]. – Access mode: https://digital.report/rukovoditel-elektronnogo-pravitelstva-uzbekistana-obitogah-i-gryadushhih-peremenah.

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS '02), 1-16. https://doi.org/10.1145/775047.775068

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: A review. ACM SIGMOD Record, 34(2), 18-26. https://doi.org/10.1145/1066157.1066178

Aggarwal, C. C. (2013). Data Streams: Models and Algorithms. Springer. https://doi.org/10.1007/978-3-642-34319-8

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Foundations and Trends® in Theoretical Computer Science, 1(2), 117-236. https://doi.org/10.1561/0400000001

Mukhitdinova, M. Kh. (2023). Effectiveness of AI in statistical analysis of big data streaming. Scientific-technical journal of FerPI, 27(3), pp. 148-152.

Mukhitdinova M. Kh. Harnessing the power of artificial neural networks for advanced statistical analysis. Scientific Journal of “International Finance & Accounting” Issue 2, April 2023. ISSN: 2181-1016.

http://interfinance.tfi.uz/?p=2894.

Загрузки

Опубликован

2025-03-31

Как цитировать

Mukhitdinova, M. (2025). THEORETICAL FOUNDATIONS OF STATISTICAL ANALYSIS OF BIG DATA STREAMS. Raqamli Iqtisodiyot Va Axborot Texnologiyalari, 5(1), 99–104. Retrieved from https://dgeconomy.tsue.uz/index.php/dgeco/article/view/307

Выпуск

Раздел

Raqamli iqtisodiyot va axborot texnologiyalari
Loading...