EFFECTIVE METHODS AND MECHANISMS FOR UTILIZING BIG DATA TO ENSURE SUSTAINABLE ECONOMIC DEVELOPMENT OF AN ENTERPRISE
Ключевые слова:
big data, sustainable development, economic growth, analytical systems, data security, regulatory framework, strategic management, process optimizationАннотация
The article analyzes methods and mechanisms for utilizing big data to ensure sustainable economic growth of enterprises. Key areas of data integration are examined, including market demand forecasting, optimization of supply chains, financial performance monitoring, and human resource management. Particular attention is given to the organizational and technical requirements for implementing big data, as well as the need for a regulatory framework that ensures data integrity and security. The study identifies the main advantages of using analytical systems to enhance operational efficiency and reduce risks, enabling enterprises to adapt to changing economic conditions and achieve strategic goals
Библиографические ссылки
Agrawal, D., Das, S., & Abbadi, A. E. (2011). Big data and cloud computing: Current state and future opportunities. Proceedings of the 14th International Conference on Extending Database Technology, 530-533. DOI: 10.1145/1951365.1951432.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. DOI: 10.2307/41703503.
Chae, B. (2015). Insights on big data analytics in supply chain management: A literature review. International Journal of Production Economics, 165, 234-246. DOI: 10.1016/j.ijpe.2014.12.031.
Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business Review Press.
Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. DOI: 10.1016/j.ijinfomgt.2014.10.007.
George, G., Haas, M. R., & Pentland, A. (2014). Big data and management. Academy of Management Journal, 57(2), 321-326. DOI: 10.5465/amj.2014.4002.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115. DOI: 10.1016/j.is.2014.07.006.
Jagadish, H. V. (2015). Big data and science: Myths and reality. Big Data Research, 2(2), 49-52. DOI: 10.1016/j.bdr.2015.01.005.
Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7), 2561-2573. DOI: 10.1016/j.jpdc.2014.01.003.
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR analytics. International Journal of Human Resource Management, 28(3), 3-24. DOI: 10.1080/09585192.2016.1244699.
McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.
Russom, P. (2011). Big data analytics. TDWI Best Practices Report, Fourth Quarter.
Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77-84. DOI: 10.1111/jbl.12010.