LEVERAGING MAXIMUM LIKELIHOOD METHOD FOR COMMUNITY DETECTION IN SOCIAL NETWORKS: A NEW FRONTIER IN MARKETING
Ключевые слова:
Maximum likelihood method, community detection, social networks, marketing strategies, targeted advertising, influencer marketing, customer segmentation, competitive analysis, product development, data-driven marketingАннотация
The rise of social media has transformed the marketing landscape, offering businesses unparalleled access to vast networks of potential customers. However, the complexity of social networks necessitates sophisticated analytical tools to effectively target specific demographics or communities. This article explores the application of the maximum likelihood method for community detection in social networks as a novel approach to enhance marketing strategies. By partitioning networks into distinct communities, marketers can tailor their campaigns to resonate with the unique characteristics and preferences of each group. The article discusses the method's theoretical underpinnings, its practical applications in targeted advertising, influencer marketing and product development, and the challenges and ethical considerations associated with its use.
Библиографические ссылки
Fortunato S., Community detection in graphs, Physics Reports, Volume 486, Issues 3–5, 2010, Pages 75-174, ISSN 0370-1573, https://doi.org/10.1016/j.physrep.2009.11.002.
Newman, Mark EJ. The structure and function of complex networks. SIAM review 45.2 (2003): 167-256. https://doi.org/10.1137/S003614450342480.
McPherson, Miller, Lynn Smith-Lovin, and James M. Cook. "Birds of a feather: Homophily in social networks." Annual review of sociology 27.1 (2001): 415-444.
Wasserman, Stanley, and Katherine Faust. "Social network analysis: Methods and applications." (1994).
Girvan, Michelle, and Mark EJ Newman. "Community structure in social and biological networks." Proceedings of the national academy of sciences 99.12 (2002): 7821-7826.
Weber L., Marketing to the Social Web: How Digital Customer Communities Build Your Business. ISBN:9781118258125 |DOI:10.1002/9781118258125. 2009.
Airoldi E.M., Blei D.M., Fienberg S.E., Xing E.P. Mixed membership stochastic blockmodels // J. Mach. Learn. Res. 2008. V. 9. P. 1981-2014. 25.
Мазалов В. В., Никитина Н. Н. Метод максимального правдоподобия для выделения сообществ в коммуникационных сетях //Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. – 2018. – №. 3. – С. 200-214.
Dilshodbek, Zakhidov, and Shukrulloev Bektosh. "THE MAXIMUM REALIZATION METHOD OF COMMUNITY GROUPING IN SOCIAL NETWORKS." CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES 4.5 (2023): 56-61.
Dilshodbek Z. THE APPLICATION OF DIVIDING THE SOCIAL NETWORK INTO COMMUNITIES TO THE ECONOMY //INTERNATIONAL SCIENTIFIC RESEARCH CONFERENCE. – 2023. – Т. 2. – №. 18. – С. 50-53.
Zakhidov, Dilshodbek, and Usarov Jurabek. "DIVISION OF SOCIAL NETWORKS INTO TWO COMMUNITIES USING THE MAXIMUM LIKELIHOOD METHOD." Horizon: Journal of Humanity and Artificial Intelligence 2.5 (2023): 689-694.
Zakhidov, Dilshodbek, and Shukrulloev Bektosh. "DIVISION OF HEPTAGONAL SOCIAL NETWORKS INTO TWO COMMUNITIES BY THE MAXIMUM LIKELIHOOD METHOD." Horizon: Journal of Humanity and Artificial Intelligence 2.5 (2023): 641-645.